Best
Available

copy




|
|

LT

AD-A286 168

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

PERFORMANCE OF A FAST FREQUENCY-HOPPED
NONCOHERENT MFSK RECEIVER OVER RICIAN
FADING CHANNELS WITH EITHER PARTIAL -BAND
INTERFERENCE OR MULTI-TONE INTERFERENCE

by
Joseph Francis Sheltry

September, 1994

Thesis Advisor: R. Clark Robertson
Second Reader: Alex W. Lam

Approved for public release; distribution is unlimited.

T o
FEMATNT o T
94 11 1- 013




REPORT DOCUMENTATION “Form Approved OMB No. 0704

HPublic reporting burden for this collection of information is estimated to average 1 hour per response. including the time for reviewing
instruction, searching existing data sources. gathering and maintaining the data nceded. and completing and reviewing the collection of
nformation. Send comments regarding this burden estimate or any other aspect of this collection of information. including suggestions for
educing this burden. to Washington headquarters Services. Directorate for Information Operations and Reports. 1215 Jefferson Davis
IHighway. Suite 1204. Arlington, VA 22202-4302. and to the Office of Management and Budget. Paperwork Reducthion Project

¥0704-0188) Washington DC 20503,

1. AGENCY USE ONLY (lLeave blank; 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1994 Master’s Thesis

- —1
f TITEE ANDSUBTITLE PERFORMANCE OF A FAST FREQUENCY-HOPPED |5 FUNDING NUMBIE RN
NONCOHERENT MFSK RECEIVER OVER RICIAN FADING CHANNELS
WITH EITHER PARTIAL -BAND INTERFFRENCE OR MULTI-TON}E
| INTERFERENCE (U)
r AUTHOR(S) Joseph Francis Sheltn
PERFORMING ORGANIZ ATION NAMEGS) AND ADDRE SNt ) £ PEREORMING ORGANIZAVTION
Naval Postgraduate School REPORT NUMBER
Monteres (A 939435000
SPONSORING MONTTORING AGENCY NAMES) AND ADDRESNES) 10 SPONSORING MONTTORING
AGENCY REPORT SUMBER
TESUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not retlect the official polsos or
witton of the Depantment of Defense or the E S Gosernment
120 DISTRIBU TION AV AN ABHITY STATENENT Approved tor public relcase 126 DINTRIBUTION CODY 1
istribution unlimited \
13 ABSTRAC imavimum JiHwords: An error probabilits analysis 1s pertormed for a conventional noncoherent M-an

orthogonal trequency -shift heving ({MFSK) recenver emploving fast trequency -hopped (FFH) spread spectrum
waveforms transmitted over a trequency -nonsclective. slowly tading Riccan channel with partial-band noise
interference  Each diversity reception is assumed to tade independentis - The partial-band imerterence 1s modeled as a
Gaussian process  The effects of wideband thermal nowse are also included  The energy per hop s held constant. thus,
as diversity increases. energy per svmbol increases  Previous analyses considered only constant energy per ssmbol
svstems. however, practical military syvstems are hkels to employ fived hop rates  There 1« some performance
enhancement to be obtained from implementing diversity in a conventional FEH MFESK sy stem with fixed hop rates. but
partial band interference sull results in significant degradation

Additionally . the performance of this FFH receiver is investigated over the same channel in the presence of
partial-band tone jamming without diversity for the case of binany frequency -shift keving (BFSK) when both the signai
and the jJammer can fade independentiy  Performance when only a single jamming tone per hop siot 1s aliowed s
compared to that obtained when two jJammng tones per hop slot are possible When the jamming signal experiences
Ray ieigh fading there 1s very hittle degradation of the jammer’s effectineness as compared to when the jJamming signal i«
not aftected by fading

14 SUBJECT TERMS Spread spectrum communications. fast trequency -hopping. partial-band 16 NUAMBER OF PAGES
interterence. multi-tone interference. MESK 102

Is PRICE CODE

17 SECURITY 18 SEOURITY 19 SECURITY 20 TINMITATION o

CLASSIFICATHON OF CLASSIFIC ATION OF THIS CLASSIFICATION O ARSTRACT
Rl POR1 PAGH ARSTRACT vl

{ nclassified I nclassitied U nclassified

NAN T440.01- 280200 Standard Form 298 (Rey 2-89
Prescnibed By ANST A 29408




Approved for public release: distribution is unlimited

PERFORMANCE OF A FAST FREQUENCY-HOPPED NONCOHERENT
MFSK RECEIVER OVER RICIAN FADING CHANNELS WITH EITHER
PARTIAL -BAND INTERFERENCE OR MULTI-TONE INTERFERENCE

by
Joseph F. Sheltry
Lieutenant. U.S. Nawvy

B.S. Chemistry. Umiversity of Idaho. 1988

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL
September 1994

xf/m

Joseph Francis Shez

%Fk Robertson, Thesis Advisor
A ﬂfmﬂﬂ/

Author:

Approved by:

bcrannton Pop
] _~__?_—1 Alex W. Lam. Second Reader
L v =2 i
.13 ST 1batl O 7YVl ar
. | Michael A. Morgan, Chairmar”
- -~—4 Department of Electrical and Computer Engineering




ABSTRACT

An error probability analysis is performed for a conventional noncoherent M-ary
orthogonal frequency-shift keying (MFSK) receiver employing fast frequency-hopped
(FFH) spread spectrum waveforms transmitted over a frequency-nonselective, slowly
fading Ricean channel with partial-band noise interference . Each diversity reception is
assumed to fade independently. The partial-band interference is modeled as a Gaussian
process. The effects of wideband thermal noise are also included. The energy per hop is
held constant: thus. as diversity increases. energy per svmbol increases. Previous
analyses considered only constant energy per symbol systems. however. practical military
systems are likely to employ fixed hop rates. There is some performance enhancement to
be obtained from implementing diversity in a conventional FFH/MFSK system with fixed
hop rates. but partial band interference still results in significant degradation.

Additionally, the performance of this FFH receiver is investigated over the same
channel in the presence of partial-band tone jamming without diversity for the case of
binary frequency-shift keying (BFSK) when both the signal and the jammer can fade
independently. Performance when only a single jamming tone per hop slot is allowed is
compared to that obtained when two jamming tones per hop slot arc possible. When the
jamming signal experiences Rayleigh fading there is very little degradation of the

jammer's effectiveness as compared to when the jamming signal is not affected by fading.
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1. INTRODUCTION

A fast frequency-hopping (FFH) communication system is a subset of spread
spectrum communications that utilizes a bandwidth greatly exceeding that required for
the information signal alone. Frequency-hopping spread spectrum is fundamentally
different from direct sequence (DS) spread spectrum in the technique of signal generation
and recovery. This thesis focuses on frequency-hopping spread spectrum systems
because of their practical military importance. As spread spectrum systems grow more
popular and occupy wider communications andwidth, the likelihood of both hostile and
non-hostile sources of narrowband interference also grows. It is important for mission
planners to have a reliable estimate of the degradation that their communication systems
will suffer under partial-band noise interference as well as tonal interference. Fast
frequency-hopping spread spectrum techniques have evolved to counter the threat of
intentional jamming [Ref. 1]. This thesis presents an error probability analysis of the
conventional fast frequency-hopped orthogonal M-ary frequency-shift keying
(FFH/MFSK) recetver with noncoherent detection for communications over channels
with Ricean fading of the signal and partial-band noise interference. The influence of
partial-band tonal interference on the binary orthogonal frequency-shift keying
(FFH/BFSK) receiver without diversity where both the signal and jammer may fade

independently is also considered.




A. FFH/MFSK

Frequency-shift keying is popular as a signaling scheme because it allows for

noncoherent reception of the signal. A typical MFSK signal set can be expressed as

51(6) = 2 Accosnfot +01) (1)
s2(1) = 2 Accos [2n(f, + Af )t + 03] ()

and so on to
su(f) = V2 Accos [2n(f, + (M- 1A + O] 3)

where f, is the lowest signal tone, Afis the tone spacing, and 0, is the phase associated

with each tone. This set is then modulated by a carrier that varies pseudorandomly in
frequency for transmission as a frequency-hopped signal.

All communication signals suffer from interference and noise. One method to
overcome this degradation is to transmit the signal more than once thus providing a form
of diversity. Fast frequency-hopping employs this redundancy as well as deliberately
spreading the bandwidth. Frequency-hopping systems in which several symbols are
transmitted per hop are considered slow frequency-hopping, while those transmitting
several hops per symbol are considered fast frequency-hopping. Our FFH/MFSK
transmitter performs L hops per data symbol, which results in a diversity of L. At the
receiver the dehopped signals are recovered noncoherently by two correlators in phase
quadrature with the dehopped signal waveform. The correlator outputs are sampled every

T, seconds, where T}, is the hop period. The sampled output of each correlator pair is




squared and then these outputs are summed L times to obtain the decision statistic for
each branch of the M-ary detector. The largest signal detected is selected as the
transmitted symbol. A typical receiver structure is shown in Figure 1.

Proper reception and demodulation of the spread signal depend on the recovery of
several pieces of timing information. Both the sender and receiver need the same
pseudorandom sequence operating synchronously. Also required are the symbol period
and the hop period. In practice these are estimated from the received waveforms. This

thesis assumes that this information is recovered without error.
B. MULTI-PATH EFFECTS

The losses experienced by the signal during propagation is worthy of an entire study
in itself. However, it is useful to make some general observations on the composition of
the received signal. It is possible and even likely that the received signal arrives at the
receiver after transiting a variety of different paths. Signals traveling a longer distance
arrive delayed relative to the direct path signal. This leads to multi-path effects. The
magnitude of the multi-path effects depends on the magnitude of the delayed signal
strength versus the direct path signal strength. It is common to consider the sum of all

delayed signals as the diffuse component of the received signal. [Ref. 2]




She

.

S1a(t)

S1aquad(t)

"

OST(h)dt

2
()

X1k

X1

S

N

0

i

()

2
()

)
5]
c
5
Tt
9
£
+
8 Sa2a(t)
3 Staun(t)
+

-
5 -& fa
£ .
x ®
%) .
L
E Th
b .?OS(M
g SMa(t)
o
:F‘.) SMauae(t)
i)

iy

St

| Sample every Thop |

X2k

X2

Xmk

[ 3e]

k=1

Figure 1. Typical MFSK Receiver Structure

Choose Largest




The consequence of multi-path reception is to cause the signal to fade in a time
varying fashion. We can broadly characterize the channel conditions by examining the
magnitude of the direct signal power to the diffuse signal power. The Ricean channel is
the general case. Channels that have nearly all the received signal energy in the direct
component, i.e., direct-to-diffuse ratio greater than 100, have essentially no fading. In the
limit, an infinite direct-to-diffuse ratio implies a Gaussian channel. Channels that have
nearly 21l the received signal energy in the diffuse component, i.e., direct-to-diffuse ratio
less than one, have strong fading. A direct-to-diffuse ratio of zero implies a Rayleigh
channel. For direct-to-diffuse ratios between these extremes the channel experiences
Ricean fading. This thesis examines the performance in each of these broad categories.

In addition to these broad categories, the time varying nature of the channel can be
described as slow or fast. In this thesis the channel properties are assumed to be constant
over the duration of a hop and, therefore, slowly varying. Further, the channel may
introduce some signal distortion arising from the treatment of sinusoids comprising the
signal set within a hop differently. This distortion is characteristic of frequency selective
channels. However, it is reasonable to assume that the signal sinusoids experience the
same multi-path effects. This is the case in frequency nonselective channels. One
measure of this phenomenon is the coherence bandwidth of the signal. The coherence
bandwidth is the frequency range over which the signal frequencies pass through without

distortion. This can be summarized mathematically as

@), = 7‘; @)




where (Af). is the coherence bandwidth and 7, is the multi-path spread of the channel.
A frequency nonselective cannel displays a coherence bandwidth that is larger than the

signal bandwidth. The rate of fading is related to

=1
(an, = B, )

The coherence time is (Af), and B, is the Doppler spread of the channel. Slowly
fading channels display a large coherence time or, conversely. a small Doppler spread.
These descriptors are discussed further in the system description.[Ref. 2] The use of
diversity to mitigate the multi-path effects for conventional MFSK has been widely
investigated [Refs. 2, 3, 4].

When analyzing performance it is important to distinguish between a constant energy
per hop system and a constant energy per symbol system. As diversity increases. the total
symbol energy in a constant energy per hop system increases. while the symbol rate
decreases. However, in the constant energy per symbol system. increasing diversity, L,
implies decreasing hop duration, 7,. Hence, a constant data rate is maintained. but the
energy per hop is reduced. Since many practical military communication systems employ
a fixed hop rate and a variable data rate, the constant energy per hop assumption is more

logical [Ref. 5].
C. CONSTANT ENERGY PER HOP SYSTEMS

Previous work has examined the performance of the noncoherent MFSK receiver in a

Ricean fading channel with partial-band noise interference and constant energy per




symbol [Ref. 3]. Additionally, the performance of the conventional BFSK receiver under
partial-band noise jammin without the multi-path effect of fading is analyzed in [Ref. 6].
However, these investigations do not consider constant energy per hop signaling. The
performance of several different types of diversity combining receivers. including the
conventional receiver, utilizing constant energy per hop is simulated for Rayleigh fading
channels in [Ref. 7].

Motivating this thesis is the uncertain degree of improved performance offered by
more elaborate receiver designs, such as the noise normalized receiver, over the
conventional receiver for variable data rate systems. [Refs. 3. 4] The expense and
complexity of a more elaborate receiver may not be justified in some circumstances when
utilizing a constant energy per hop system.

The constant energy per hop scheme is of practical value because it allows the
potential for an adaptive signaling scheme in which the sender and receiver can optimize
the data transmission rate. In poor environments, diversity can be increased at the
expense of lowered data rate. In favorable environments, the level of diversity, L , can be
lowered to accommodate a higher data rate. These adaptations will ideally not require
any hardware modifications and will be transparent to a channcl observer. With this
adaptive scheme in mind . this thesis examines the improvement offered by varying the

level of diversity possible when the jammer is sub-optimal.




D. TONE INTERFERENCE

Another type of narrowband interference is tone interference. This can consist of a
single interfertng or multiple interfering tones. In this thesis. a performance analysis for a
FFH/BFSK receiver without diversity over fading channel conditions similar to those
assumed for noise interference is considered. Since the interfering tone or tones are
signal-like in nature. thev too can suffer multi-path effects. This analysis considers the
effects of fading on both the signal and jammer. In a FFH/BFSK system an intelligent
jammer can potentially cause more degradation by splitting his available power over both
the signal tones. The degree of communication impairment of the single tone interference
per hop versus two interference tones per hop strategy is also considered. Clearly, the
greatest performance degradation occurs when the interfering tones correspond exactly to
the various frequency-hopped symbol tones. Tone jamming where the tones do not
correspond exactly to the various frequency-hopped symbol tones are not considered in

this thesis.




I1. PARTIAL-BAND NOISE INTERFERENCE

A. SYSTEM DESCRIPTION

The partial-band noise interference. either intentional or unintentional. considered in
this thesis is modeled as additive Gaussian noise and. when present. is assumed to be in
all branches of the MFSK demodulator for any reception of the dehopped signal.
Thermal noise and other wideband interferences which are also assumed to corrupt the
signal are modeled as additive white Gaussian noise. Only the signal is assumed to be
affected by channel fading. The smallest spacing between frequency hop slots is assumed
larger than the coherence bandwidth of the channel. hence. each dehopped signal fades
independently [Refs. 2.8]. As discussed in the Introduction. the signal bandwidth is
assumed to be much smaller than the channel coherence bandwidth, and the channel
coherence time is assumed to be much larger than the hop duration or, equivalently, the
hop rate is assumed to be large compared to the Doppler spread of the channel. The first
assumption implies that the channel is modeled as frequency-nonselective, while the
second implies that the channel is slowly fading. The signal channel is modeled as a
Ricean fading channel, hence, signal amplitude is a Ricean random variable [Refs. 2.8].
For Ricean fading, the total signal power consists of a direct signal component and a
diffuse signal component, and the strength of the fading channel is characterized by the

ratio of the direct signal component power to the diffuse signal component power.




The symbol rate is R,. For MFSK with M order modulation. the corresponding bit
rate is .4, = log ,(M) . For L hops per symbol. the hop rate is R,= LR,. The spread

spectrum bandwidth. #'. is considered very large compared to the hop rate.

B. PARTIAL-BAND NOISE JAMMING ANALYSIS

1. Problem Development

The partial-band noise interference when present is assumed to be in all branches
of the MFSK demodulator and affects each chip of the dehopped signal with probability y

where 7y is the fraction of the spread bandwidth being jammed. Hence, the fraction of the

spread bandwidth not being jammed is 1 —y. If the average power spectral density of
the interference is N,/2 over the entire spread bandwidth, then the power spectral
density of the partial-band interference when present is V,/2y. The power spectral density
of the thermal noise and other wideband interferences which are modeled as additive
white Gaussian noise is N/2. Consequently, total noise power spectral density is N/2 in

the absence of partial-band interference; otherwise,

()%

is the total noise power spectral density when narrowband interference is present.

If the equivalent noise bandwidth of each detector branch in the MFSK
demodulator is B Hz, then the noise power received in a given hop is 6} = 67 =N,B
with probability 1-y when no jamming is present. When jamming is present, the total

2 2 (N i

noise power in a given hop kis o} = cf tor={7+ No) B with a probability of y.

10




We assume that each receiver hop slot has the same noise equivalent bandwidth. The

noise equivalent bandwidth of the receiver investigated in this thesis is B=R,.

2. Probability of Bit Error

When partial-band interference is present the probability of symbol error for a

MEFSK receiver is

L ip o
Zo( ; )v'(l—y)L Py(i) Y

=

P

where P (i) represents the conditional probability of a symbol error given that i of L hops
of a symbol are jammed. Since each signal branch of the receiver is symmetric with the
other branches, we can determine the probability of a symbol error . P, . by considering
the signal to be present only in branch one of the MFSK demodulator. The outputs of the
other branches are assumed identical and independent (iid).

For orthogonal MFSK the probability of a bit error is related to the symbol error

M
2(M-1)

P, (8)

Py =

The energy per bit as a function of the symbol energy and the modulation order is

E,
log, (M)

Ey= (9)

11




3. Probability of Symbol Error Under Partial-band Noise Interfere..ce

Assuming the signal is present in branch one of the MFSK demodulator allows
us to write the probability of a symbol error based on the conditional probability density
functions that i of L hops are jammed.The conditional probability density function for the

output of the branch containing the signalis fy, (x) |i) where X, is the random variable

that represents the output of the signal branch. The conditional probability density

functions for the non-signal branches are fx,, (xm!i).m = 2,3.4...M where the X, 's are

the identically distributed random variables that represent the output of the branches that

do not contain the signal. [Ref. 3] The conditional probability of symbol error is

Py =1= [ o ol [ fratelivdin |y (10)

forallm=1.

Since the partial band interference may or may not be present in a hop, we must
be able to differentiate between the two possibilities. Let the subscript n= 1, 2 denote that
hop k of a symbol has interference and has no interference. respectively. The diversity
summer acts to add together all L independent hops in its branch. Of those hops i of them
are jammed: hence, we can express the random variable at the output of the diversity

summer (10) as

!
Z ml(,, Z/\mk."’ Z \MA m=123..M (l])

k=1-1

12




a. Probability Density Function for the Decision Variable X,,
The probability density function of the independent, identically distributed
(iid) random variables X, . m= 2,3,....M that represent the demodulator branch outputs

not containing the signal for hop & of a symbol is

] ~X mk
Vo (Xmk) = — €X uGxm) m=23,...M (12)
St 252 p(2of)

where u(e)is the unit step function. [Ref. 9]

The Laplace transform of (12) is

: 1
Fyx,(s)= 13
! 2085 +1 (13

Since each hop is independent, from (11), we can express the Laplace transform of the

conditional density function. fy, (x=!i) , as
i L-1
Fy, (sl = [F"'mh (slz)] x ljF,\-m,,2 (SII)J (14)

Direct inversion of (14) leads to an infinite series of confluent hypergeometric functions,
but this proved difficult to program and slow to execute. To evaluate (34) we first invert
the individual portions consisting of either all hops jammed or all hops not jammed. The
conditional density function for the decision variable is then obtained by convolution.

The Laplace transform pairs are

[F.\-Ml(slz)]’cn( I 1 x' exp[ —xz ju(x) (15)
1

26,/ (=1 263

and

13




L~ /
-t L-i-1 _
[F-"m:(-"')y Q( IZJ (L{i—l)' exP[?o); Ju(x) (e
: <Pk

20j;

where o,,”and o,,’ represent the noise power in a hop experiencing interference and a hop

experiencing only thermal noise, respectively. To recover fy,, (xm) . the two m-Erlang

random variables above are convolved . Hence. the inverse Laplace transform of (14) is

obtained from a convolution of the individual right hand sides (RHS) of (15) and (16) as

[ L-t
1 ! Gm=0""" -0
f‘ (xm“) r (20*]) (zczzj (I—])' exp(ZG“J (L‘I_l)' xp[ 20'%2 ]d[(17)

Applying the binomial theorem to the integrand of (17) and defining

1 L-i
| 1 1
x_[2ci,J (20‘22J L-i=DWE-1! (18)

we can express (17) as

L-i-1 -
Sin(xmli) = Kr ( ;‘ ! )xf,,(—t)L"""‘exp l—°’—|—- dt (19)

- 2
20}, 20;-

Interchanging the order of integration and summation and integrating term by term, we

get [Ref. 10, equation 3.351.1]

Lt (L-i=1 ) ((—xm V&' (=D)(k i = D)lxky=1
ml ( J ]/‘ L-1~1-k m
- G A R CR (k+i=1-Dia-p)"'

where for brevity

and

14




1
=— 22
p 202, (22)

The special cases of all hops jammed (i=L) and no hops jammed (i=0) are
obtained directly from (15) and (16) respectively, since the analysis leading to (20) is not
valid in theses cases. The remaining task is to evaluate the cumulative distribution
function of f,.(x,|i) that is required for computing the probability of symbol error, (10).
The computation required for the non-signal branch contribution to the probability of

symbol error is _[;" fx.(xm). There are two avenues to compute this, the first based on

direct integration or, equivalently, the second based on an inverse Laplace iransform of

Fy (sliys.

Directly integrating (20), valid when 0 <i < L, we have

" _ (@ypt R k(l’—i~1)
) f"'"(x"'mdx"'_(i—l)!(L—i—l)! Eo D k

— i1 L-1=1-k L-1-1-k-p
€ 1h.k)!{ L exp(-Prm) X Xm }
(a-P)

x(k+i— ]),[ BL»:—I p=0 (L“i— 1 _n_p)!BP*'l

k1) (L-i-1) { 1 L-2-m xL-2-lq }
- _ . ,
,,zé h+i-1-Da- B)M ol exp (—ox ) EO L-2-I-g)a® (23)

This equation is simplified by expanding the binomial coefficient and canceling like

terms to obtain

15




! (k+i-1)!{ a'Bt

J; Srn(xm| )X, = (-1 & k! -D'BG-a)™

_ _ L-1-1-k (me)P:' _ BL—: k+i-1 (L S I)!(_])k—l—]
[] exp( me) Z p' (L—I—l—k)' 1=ZO (k+i—1—[)!(B—G.)m”al'_'-l_l

p=0
L-2-1
[1 ~exp (—axm) X (g—x,i)z]} (24)
q=0 p:

when 0 <i < L. For the case of all hops jammed, i = L, the cumulative density function is

L
N e 1 xL—l b e
.ro fx,,,(x)dx—Jz (20i1) €L-1! exP{Zci, }dx

k
L-1
1 x
=1-exps —— Z—(—,) 25
p{zcil }*:0 K\ 26;, )

and for the case of no hops jammed, i = 0, it is

L
romfx,,,(x)dx=£"( l ] (in_;)! exp{ X }dx

2 2
261‘2 20’*2

i
L-1
=]-ex = _ E l(_x;.] 26)
p{zciz }’FO k'\ 263, (

A final useful form is obtained by making the lirear transformation of the random

variable X, . Recognizing that a = -l; and B = ! ~.then
209 203
-
a_2 03 N,
— T s T emm— T emm— 7
20;

Then making the change of variables y = f8x,, in (24) we get

16




) L) (k= i - 1)! (Np)*
Frpli)= (,_1), 2 {(_1)"(Nr-1)"*"

L-i-1-k ))_P] _ (NT)L—i k+i-1 (L _ 2 _ I)!(_l)k—l—l

1_ —
{ exp (-y) p% Pl L=-) o (k+i-1-DNr-1D"

(28)

which is useful for numerical integration purposes. Applying the same substitution in (25)

and (26), we get

L-1
Froll)=1-exp {5} & 1:0) 29)
and
L-1 k
Froi0) =1 -exp| - ]H ;(‘—,(-;LT} (30)

for the case of all hops jammed and no hops jammed, respectively.

Previous efforts to determine the cumulative distribution for the non-signal
branches, the second technique, is based on a numerical inverse Laplace transform of the
function -;- x Fx, (sli) [Refs. 3, 4]. Despite the finite sums of exponential-like terms in

(28). this second method proved more accurate for large values of L .

b. Probability Density Function for the Decision Variable X,
Continuing with the assumption that the signal is present in branch one of the

MFSK demodulator accompanied by Gaussian noise , the random variable X, is described
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by the conditional density function fy,(x;|7) . Given a signal amplitude of J2 a; and

before diversity combining, the probability density function of X, is

_(x”‘ + 2“‘%) Ak 2x 1k
10 3 u(ka) (3])

1
fugbenla =~z exp >

o} 20}

where /y(e)is the modified Bessel function of the first kind and order zero. The channel

is assumed to have Ricean fading; therefore, g, is a Ricean random variable with a

probability density function given by

_(ai + az) Io(aka\

Jala) = g% exp| —— 7 ) u(an) (32)

o

where a.? is the average power of the direct signal component and 2c2is the average

power of the diffuse signal component [Refs. 2, 11]. The total average signal power of a

hop & of a symbol is a® + 202 and is assumed to remain constant from hop to hop.
The random variable X, when hop k of a symbol has interference and no

interference is denoted by X1k, and X, respectively. The conditioning is removed by

integrating the product of (31) and (32) with respect to g, from zero to infinity with the

result

xu,,+2(12)j|lo[y‘2xu,,a2 ] 33)

./:"u,.(x”n): ’ exp —[ 2 9
2(o} +2oz) 2\ o}, +207 oj, +20°
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for xix, = 0 where o}, implies a jammed hop and o3, implies no jamming. Since each

hop is independent, from (11) we see that the Laplace transform of the conditional

density function for the signal branch, fx,(x,1i) , is

Fy,(sliy = [Fx,s1)]" o [Fx,s1)]"” (34)

The Laplace transform of the density function describing a single hop, fx,(x1x) , is

_ 2
F,\'u,,(s)z (Bk") Xp( 20 Bk"s) (35)

+Br)  PUs+Bs,

where

]

2(2«32 + Gi.,) o

Bi, =

When(35) to the ¢, power and the inverse Laplace transform is taken, the result is
equivalent to taking the ¢, fold convolution, denoted by ®c, . Letting ¢, = i and

c; = L - i, so that elements subscripted with a 1 correspond to jammed hops while
elements subscripted with a 2 correspond to hops experiencing only thermal noise, then

(en-)2
Pr.x 1k,

®cn
[f:Yu,,(xlk,,)] = (26‘ aZ)(Cn—])/Z

xeXp [Pk, (X 1k, + 2cn0?)] x /¢, 21 (ZBk,, J20naix g, ) u(x14,) (37)

where /.- represents the modified Bessel function of integer order ¢,-1. {Refs. 3, 11]

Unlike the case of the non-signal branch analysis, no analytic solution for the final
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convolution for the decision variable X, has been found. Symbolically, the probability

density function for X, at the output of the diversity summer is described by

®(L-1)

ity =, 1] © oy 110 (38)

C. NUMERICAL EVALUATION OF PARTIAL-BAND NOISE JAMMING

For levels of diversity up to L= 20, the conditional probability of symbol error is first
computed based on the signal energy-to-thermal noise power spectral density ratio,
signal-to-jammer power spectral density ratio, signal fading direct-to-diffuse ratio, and
fraction of spread spectrum bandwidth jammed. These input parameters form the basis
for the probability of symbol error which is converted to probability of bit error using

(8). To summarize

2 . .
o direct signal power/ho

Gi= % - NP P (39)
o} noise power/hop

_ 2c* _ diffuse signal power/hop

= = 40
=5 noise power/hop (40)
Ep _ average energy per bit @l
N,  thermal noise power spectral density

En average energy per hop
— = . (42)
s interference power spectral density
Ck) (af J
R, = (_ =| =& (43
* 7 \& 20 )

and0.0<y<10.
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The computation of the probability of symbol error is achieved for each L by
weighting and summing the probabilities of symbol error conditioned on i of L hops
jammed. A numeric integration is performed over the product of the signal path

contribution and the non-signal path contribution (10).
1. Non-Signal Path Contribution

The cumulative distribution function is computed using the analytic expression of
finite summations given by (28) for 0 <i < L for small L. However, it is computationally

faster and results in less round off error for large values of L if a numerical inverse

Laplace transform is performed on % x Fy, (sl7). The special cases of all hops jammed

(i=L) or no hops jammed (i=0) can be computed directly from (25) or (26), respectively.
The convergence of the inverse Laplace transform is accelerated by the Euler
transformation [Ref. 12} usually taking about 60 terms to reach relative errors on the
order of 10°°. However, certain combinations of input parameters results in slower
convergence. The inverse Laplace transform algorithm is limited to not more than 1000

iterations.
2. Signal Path Contribution

For the special cases either of all hops jammed or no hops jammed. the required

probability function f,(x; i) is given by (37). In the case of all hops jammed n=1.

¢, = L. and ¢, =0, and in the case of no hops jammed n=2. ¢, = 0. and ¢, =L. In both of
these cases. (10) can be solved analytically, but the results are so complex that numerical

evaluation is easier and more straightforward. When i # 0 and i # L,(38) is evaluated by
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the numerical inversion of (34) after which the probability of symbol error, (10), is
evaluated numerically.
The partial-band jamming fraction that yields the worst-case performance for the

conventional receiver is obtained experimentally by computing the probability of bit error

Ev < Eu
N, 24y

fading severity, results are obtained for several values of the direct-to-diffuse ratio. For

as a function of y for fixed values of . To cover the broad range of channel

weakly fading channels, exhibiting a strong direct signal component, a direct-to-diffuse
ratio of 100 is used. This is essentially a Gaussian channel. For strongly fading channels,
considered as nearly Rayleigh channels, a direct-to-diffuse ratio of one is used. Typical of

a moderate Ricean fading channel, a direct-to-diffuse ratio of ten is used .
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D. PARTIAL-BAND NOISE JAMMING RESULTS

To determine the worst case partial-band jamming performance of the FFH/MFSK
receiver the probability of bit error is computed as a function of y. The process is repeated
for levels of diversity up to twenty, which represents the upper end for practical systems
in today's technology. Figure 2 through Figure 9 display the probability of bit error for
various levels of signal-to-noise ratio, total jammer power, and modulation order. The
figures are calculated with the assumption that the signal direct-to-diffuse ratio (R,) is
constant during a hop duration. Figure 2 demonstrates the performance for moderate
signal-to-noise ratio with a near Gaussian channel. The signal-to-thermal noise ratio,
E./N,, is the signal energy contained in one hop for a conventional BFSK receiver. The

table below summarizes the cases displayed in Figure 2 through Figure 9.

TABLE 1. PARAMETERS FOR WORST CASE ANALYSIS

FIGURE E,/N, dB E,/N,dB R, / Ricean Fading
Figure 2 13.35 3 100 / Very Weak
Figure 3 13.35 3 10 / Moderate
Figure 4 13.35 10 100 / Very Weak
Figure 5 13.35 10 10 / Moderate
Figure 6 16 3 10 / Moderate
Figure 7 16 10 10 / Moderate
Figure 8 20 3 1 / Strong
Figure 9 10 0 1 / Strong
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Figure 2. Worst Case Partial-band Jamming
E,/N,=13.35dB, E,/N~3dB, R,=100

The surprising result is that despite increased levels of diversity, the performance
does not greatly improve. There will be more to say about this later, but the same trend is

observed in Figure 3 where there is Ricean fading of the signal .
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Figure 3. Worst Case Partial-band Jamming
E,/N,=13.35dB, E,/N,=3dB, R,=10

Another, surprising result is that increasing the modulation order to four or eight
does not provide much improvement. Figure 2 and Figure 3 display pessimistic
performance from the communicator's viewpoint. However. they assume a high level of
jammer power. We next investigate the performance when the jammer power is just one
tenth of the communicator's power when L=1 ( Figure 4 and Figure 5) . Since we are
assuming 1000 hop slots. this is equivalent to assuming a signal-to-jammer power ratio of

-20dB for BFSK with no frequency-hopping
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Figure 4. Worst Case Partial-band Jamming
E/N.,=13.35dB, E,/N=10dB, R,=100
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Figure 5. Worst Case Partial-band Jamming
E,/N,=13.35dB, E,/N~10dB, R,=10
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A comparison of Figure 4 with Figure 5 illustrate the influences of Ricean fading
on the probability of bit error when the communicator enjoys a significant power
advantage over the jammer. Next we consider a situation where the communicator has a
larger initial signal-to-thermal noise ratio, i.e. 16dB, to see if at higher levels the jammer
could mitigate the effects of diversity with partial-band noise jamming. Figure 6 and
Figure 7 display these results.
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Figure 6. Worst Case Partial-band Jamming
E./N_=16dB, E,/N~=3dB, R,=10
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Figure 7. Worst Case Partial-band Noise Jamming
E,/N=16dB, E,/N~10dB, R,=10

To examine the extremes of channel fading on the received signal, the case of
near Rayleigh fading is examined with a direct-to-diffuse ratio of one. Since fading is
severe, we would expect poor performance even without jamming, but with some
improvement added by the increased diversity. The signal energy per hop is examined at

20 dB (Figure 8) and at 10dB (Figure 9).
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Figure 8. Worst Case Partial-band Jamming
E,/N,=20dB, E,/N~3dB, R,=1
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Figure 9. Worst Case Partial-band Jamming
E,/N.=10dB, E,/N~0dB, R;=1
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In both Figure 8 and Figure 9 the improvement offered by diversity initially
lowers the probability of bit error, but not to the extent that it can overcome the errors
introduced by partial-band jamming. It should be noted also that the high
signal-to-thermal noise ratio is received after passing through the near Rayleigh channel.
Therefore, it has a diffuse signal component equal to the direct signal component. This
represents a very poor channel for the communicator that is further degraded by
partial-band noise jamming.

The conclusion to be drawn from the preceding series of performance plots is that
for a wide range of signal-to-thermal noise level, jammer power, and channel conditions,
the increase in diversity in the FFH/MFSK receiver alone is not enough to overcome the
effects of pariial-band noise jamming acting in concert with multipath effects. The
critical parameter then is the fraction of the spread spectrum bandwidth, y, over which the
jammer power is spread. The Figures 10 through 17 demonstrate the fraction of jammed

bandwidth that provides the worst case probability of bit error.
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Figure 10. Fraction of Jammed Bandwidth
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Figure 12. Fraction of Bandwidth Jammed
E,/N.=13.35dB, E,/N~10dB, R,=100
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Figure 13. Fraction of Bandwidth Jammed
E,/N,=13.35dB, E,/N~10dB, R,=10
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Figure 14. Fraction of Bandwidth Jammed
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Figure 15. Fraction of Bandwidth Jammed
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The worst case values y are determined by computing the probability of bit error
as a function of y. Figure 10 through Figure 17 show that , in general v, depends on the
hop energy-to-thermal noise ratio (E,/N, ), the hop energy-to-jammer power spectral
density (E,/N,), the level of diversity (L), the modulation order (M), and the channel
fading direct-to-diffuse ratio. Further, the shape of the worst case y is generally the
same, showing an initial drop as L increases with a gradually lowering slope. It is
important to note that the lowest levels of y are still above 10”* which represent only one
jammed hop slot when there are 1000 hops in the frequency-hopping system.

That the increase in diversity is unable to mitigate the partial band jamming is
also indicated by looking at the trend of performance for fixed values of y. Figure 10
through Figure 17 show that performance improves linearly as diversity increases. This
is not unexpected since the constant energy per hop system increases the total energy per
bit as diversity increases, however, the change in slope of the performance curves is
indicative of the effect contributing to the worst case analysis. Figure 18 through

Figure 23 display the performance for fixed values of y.
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Figure 18. Performance for fixed values of gamma
E,/N,=13.35dB, E,/N~10dB, R,=10

Figure 18 displays the performance in a moderate Ricean fading channel where
communicator enjoys a fair signal-to-jammer power advantage. The performance
improves linearly as diversity increases. However, the slope of the performance curve is
significantly reduced for decreasing values of y. Further, we can see that for a given L
there corresponds a worst case value for y which becomes less sensitive as diversity
increases. Figure 19 displays the performance when the signal enjoys less power
advantage relative to the jammer. The trend is that for lower signal-to-jammer power

ratio performance improves more slowly.
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Figure 19. Performance for fixed values of gamma
E,/N,=13.35dB, E,/N~3dB, R,=10

The worst case fraction of bandwidth jammed is influenced by channel fading

(Figure 10 through Figure 17). Likewise, the slope of the performance curves is

influenced by channel fading . As the fading becomes more severe, i.e., near Rayleigh,

the performance improves more slowly as demonstrated in Figure 21 through Figure 23.
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Figure 20. Performance for fixed values of gamma
E./N,=13.35dB, E,/N~10dB, R,=1
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Figure 21. Performance for fixed values of gamma
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Figure 22. Performance for fixed values of gamma
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III. MULTI-TONE INTERFERENCE

A. SYSTEM DESCRIPTION

In addition to partial-band noise jamming, spread spectrum communications can
experience tonal or narrowband interference in one or more hop slots. We can similarly
expect that as spread spectrum bandwidth grows the likelihood of tonal interference will
also grow. This interference may arise from hostile sources as well as non-hostile ground
communications, satellite transponders, and radars. The multi-tone interference problem
is similar to the partial-band noise problem.

This chapter analyzes the probability of bit error arising from an "intelligent jammer"
who knows the spread spectrum bandwidth, W, and the modulation order. This
intelligent jammer is able to place a single interfering tone in one or more hop slots, but
has no knowledge of the pseudonoise (PN) sequence driving the hopping pattern. This
represents a very intelligent jammer. We then relax this situation and compare it with the
performance of the jammer who places an interfering tone in none, one, or both of the
symbol tone locations in a particular hop slot.

It is likely that the interfering tones may experience multi-path effects in a manner
similar to the signal tone. However, since the interfering tones and signal tone can arrive
from different paths, the interfering tones will in general arrive at the receiver with a
different direct-to-diffuse power ratio from that of the signal. In this thesis, the

performance when both the signal and the jammer experience fading is evaluated.
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B. MULTI-TONE INTERFERENCE ANALYSIS

1. Problem Development

First we consider the case where the jammer places at most one tone in each fast
frequency-hop slot. Only the worst case situation where the jamming tones exactly
coincide with frequency-hopped symbol tones is considered. The situation may be

visualized with the aid Figure 24.

FFH/BFSK
N slots
- —
1 2 3 4 5 N-1 N
000

tt f

Btones jammﬂ

Figure 24. Multi-tone interference in FFH/BFSK
The FFH/BFSK receiver is a special case of the FFH/MFSK receiver described

earlier. The orthogonal design is selected such that .#  is the system bit rate and each
signal tone is placed .#’, apart. In Figure 24 the bandwidth of a single hop. B. is 2.4, .

The spread spectrum encompasses W Hz and is divided into N hop slots. Although

numbered consecutively for illustration, the pseudonoise modulation will create a
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random-like sequence to the hopping pattern. In this thesis, N=1000 is choosen as a
representative number of hop slots. Further, the number of interfering tones, g, must be

an integer

1<g<N (44)

Since the jammer spreads his available power, J, equally among g tones, each
interfering tone has a power of J, =J/q . Earlier work focuses on the simplifying case
of no thermal noise [Ref. 13]. In the no thermal noise case an error can only occur if the
hop is jammed and the the interfering tone power is larger than the signal power. In this
instance the jammer can make most efficient use of his power by choosing the number of

tones to jam as

- S
g =INTG [ PJ (45)

where P, is the carrier power of the desired symbol and INTG[ ] represents the greatest
integer less than the argument. [Ref. 13, pp.596-598] In this thesis. the probability of bit
error is obtained using fixed values of g to determine a worst case scenario which
includes the effects of both signal and jammer fading as well as thermal noise. The
approach to this problem is to first detemine the probability of bit error for a conventional
BFSK system without frequency-hopping and then generalize those results to the

FFH/BFSK system.
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2. BFSK Analysis with Single Tone Interference

For the binary case we begin with the familiar expression for the probability of

bit error for the noncoherent FSK receiver

Pb =Ps| XP,[Rz >R||S|]+P32 XP,[R) >R2|S2]

(46)

where R, and R, represent the demodulator outputs of the branch detecting signal s, and

s, , respectively. Making the assumption of equally likely signaling, we have

P51=P52=

N —

and

Py= %[Pr(Rz >R\)+P,(R1 > R)]

The received energy consists of signal energy, thermal noise, and, if jammed, the

interference signal
r(f) = si(f) + n(t) + s (1),

where s, is the ith signal tone, s, is the interference tone, and n(t) is additive white

Gaussian noise with power spectral density N, /2. Since the receiver structure is

(47)

(48)

(49)

symmetric, we can simplify the analysis problem by considering the case where branch

two is jammed.

First we examine the case where the signal and interference occupy different

frequencies. Then

P,(errorls) = P,(R2 > RyIs1)
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We express the received waveform as

ri)= ﬁaccos (0, 1+0)+ ﬁajcos (w2t +07)+n()

(51)

where a. and a, are modeled as Ricean random variables. As previously discussed the

received amplitudes and phases of each tone is a random variable due to multipath

effects. For the noncoherent detector design, the output of each branch can be expressed

as a non-central Chi square random variable [Ref. 2]. For the signal branch

(rl +2a? T,z,)

202

| S5

1
fR,(rllac,s1)= -2;5exp

and for branch two containing the interference tone

(rz +2a’ T,Z,)

plom

1
sz(rzlaj,s;) = 767 exp

i S5

where 6> = N,_T,. The probability of error (50) is

P,(R:>Rilac,a;51) = J: J:l Trr(riralag, ac, s1)dradr

This represents the »robability conditioned on the amplitudes of @, and a,. The

orthogonal receiver structure and independent fading of the interference tone and the

signal tone allow the joint probability density function to be separated. Hence. {54)

simplifies to

P,(R2 > R, |S|) = Efn,(h |ac,s|)[ J:: fRz(rzlaJ,s|)dr2]dr|
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The evaluation of (55) is simplified by applying the quadratic transformation to convert
dr )

(52) and (53) to Ricean random variables [Ref. 11]. Ifr, =v?, then o = 2v;. Using
dvy
this substitution in (52), we obtain
2 272))
vi+2a:T,
Srilac,s1) = 2 exp —( > . 1o Laclsy, u(vi)  (56)
20 20 o’

Similarly for the branch output containing the interference tone

2 22
R v2 + 2aJ Tb
( ) 10[ v2 ‘;@T"” }H(Vz) (57)

\%
n(v2lay, 1) = —=ex
Jrn(nlans) =25 exp 22

Now (55) can be expressed as
P,(Vz > V| IS|) = J:f"n(vl |ac,s|)[ J:l sz(Vzla_/,S|)dV2]dvl (58)

The inner integral equation has no simple solution, but is represented symbolically as

Marcum’s Q function which is defined as [Ref. 14]
O(a,B) = r vexp {—l(v2 + az))lo[av]dv (59)
b ﬁ 2

Hence, (58) is expressed as

2 22
2a;:T J2a.T
P,(v2>vils)) = J: Q(,/Z aJT,,/o'.‘;—‘) X %Cxp{-v“’- a h}lo[ 2a 2 sV ]dv. (60)

2¢? c

which can be evaluated to obtain [Ref. 15]

C T T (o
P.(v2>vils)) = %[1 _Q(a(’ThﬁaJ0 b) +Q(ajc b’ao’Tb)jl (61)
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Equation (58) represents the contribution to the probability of bit error when the signal
and jammer occupy different tones within a hop. It remains to determine the contribution
due to a collocation of interfering and signal tones. That is

P.(error Isy) = P,(R; > R2ls2) (62)

where

fm(rl)=§(1;§exp{'2?% u(ry) (63)

Since the signal and the interference are in the same tone location, the output of

the in-phase and quadrature portions of branch two due to signal and jamming tones is

,/5 Tslaccos(B) + aycos(0,) (64)
and

J2 Ty[a.sin(8) + asin (6.)] (65)

respectively. The phase of the jammer is generally different from that of the signal.

Squaring and summing to form the branch output produces

R2(8-6,)=2T3 a2 +a? +2aca(cosBcos 8, +sinOsin, | (66)
which is simplified to

R2(8) = 2T§[a§ +a’ +2a.a,c0s 8] (67)

where 8= 0 — 6,. Now, replacing 2a,’7T,’ with (67) in (53) we get

| (rz +2Tf,(a;" +a§)) T,
fRz(r2|ac,aJ, d,52) = —eXpy- 3 1o - f2r2(a£ +a3) u(ry) (68)
20 20 o]

Now,
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P.(Ri >R, 's2,8) - J:sz(rzlac,a‘_,r, 8,52) x [J:ngl (4 lsz)dr1 ]drz (69)

Thus, the probability of error arising from collocation of the jammer and the signal is
computed from a probability density function conditional on 8. In this case the
non-signal branch is unaffected by the jamming tone. Substituting (63) and (68) into

(69), we get

72
P.(Ri > R2ls51,8) = —é— X exp {—Ea%(aﬁ +a’ +2a.a,co8 8) (70)

This can be simplified into familiar terms by replacing

2
T, E
iﬁ:agA—/’lsN—":y,, (71)

a;

and similarly for the jammer power term

T; T, E
aﬁ;}”; s>ato Loy, (72)

Then the conditional expression in (70) then becomes
1 -1
P.(R\ > Rals1,8) = (5) exp{?(yb +ys+2 [yeys cos&) ] (73)

The nuisance parameter & may be removed by multiplying by its probability density

function and integrating the conditional density. That is

P.(R\ > Ryls)) = 21; ron exp{:'z—l(y,, +ys+2 [ypys cos&) ]dB (74)
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where 8 is modeled as a uniform random variable. Since the integral is only over 8, then

[Ref. 10]

P.(R1 > R2ls))=exp {_2—1(71, +yJ)] X 4—11-5 J';n exp{ [YsYs cosS}dS (75)
which can be evaluated to obtain

Py > Rolsy= (1) xexp| Lo +1) ) x 1o 7377 ] (76)

Therefore, the phase relationship between the signal and the jammer plays a significant
role as evidenced by the modified Bessel function term. This makes physical sense.
When the phase is the same or nearly so there is reinforcement of the signal tone by the
interfering tone, but when the phase difference approaches 180 degrees there is
destructive interference.

This allows us to compute the probability of bit error in the absence of fading by

substituting (61) and (76) into (48).

=1 1-o [T [P | ol 2 25
+exp {%f—i (“3 +“3) }’O[a?ﬁﬂ 77)

An equivalent expression using (71) and (72) is

Pavoti =S 1-0( e 75 ) +0( 7. 75 ) +exo [ZLon vwo |l o7 )] 79y

Using a Q function property [Ref. 15, pp. 396], we can reduce this to an expression

containing just one Q function as
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P,,(ac,aJ) ( ,a_;Tb fach j
acaJTf, Ti )
— Iy 5 -1 |xexp Sy (ac + aj) (79)

G J

Now, the amplitudes of the received interference tone and signal tone are Ricean random

variables where

2 2
fakas)=2L exp {—[“’ T") } x Io{‘”‘?}u(a» (80)
c; 20 oyt
falar) =2 —(“3“’3) x Io| 2¢%< luy(a,) 81)
AU ) = g 20_3 0 0_% ua.

Where in each case the second moment can be expressed as

a’= + 20 fori=J,c. (82)

1

We first remove the conditioning on a, in (79). The technique is to take each piece of
(79), multiply by (81), and integrate over all possible values of a.. Hence, for the first

piece

[ Q[ jale | JacTs )/,,xac)dac =
[ /a/T;, acTh ] { (a* +?2)} lo[ara[ jldat (83)
20’:— C:
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__ 9 | ol | | 4
o273 +02 02T +62 " 62T2 + o2

+ c? 0 a;T; olT; (84)
o272 + o2 62T% +062 o212 + o2

The integral of the product of the second piece and (81) is

Ti 2 2 aCa“‘Ti dc a% + a% acOc
Eexp{--ﬁ(ac+aJ) Iy 70 x-o_—g-exp - 702 Io o2 da. (85)

Making the substitutions

. T T2
a= ”2+ 1 ,B=aJ ”,andl“=j&, then
26 202 c? c?

B2-T2 _ a’Tiol + oo 5 2c%c? (86)
4a 40'c? Tio2 +a?
BU _ JacasTy_ (87)
26 Tio?+o2
in (85), we can use [Ref. 10, equation 6.633.4] to obtain
2( 2, 2
c? _T”(aJ + a”) Tiao.
T, 5 EXP 7 5 > x Io| —=— > (88)
T,c:+0 2T;0:+20 T;o:+0
for the second piece of (79). The remaining piece to be determined is
To (2. 5)|ac a+ol ao.
0 exp{-—igz—(aj +ac) ;—gexp - —2-;%—0- e/ —;? da (89)
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Using [Ref. 10, equation 6.631.4], we evaluate (89) to obtain

2
o’ _ a;T} + alT;

1 2o Z(Tf,cﬁ + 02)

90
Tio2 + 62 (%0)

Finally, combining (84), (88), and (90) with (79), we get the probability of bit error when

the signal experiences Ricean fading as

272 2T2 27-.2
Pola)= b I—QU - Z,J 4 2] +
2(037%4-0’2) 0',_.7%4—0' GCT[,+G

o’ 0 a;T} alT; N
2(037ﬁ+02) o2T;+0? | olT; +o?

272 2
-a o;T ajo Ty
exp{ zjzb}—exp — e XI"[_’—J;_%} 91)
c 2(T§cg + 02) Tyo:+0

which is now conditional on a,. Expressing (86) in terms of

(137‘2,, (13 Tl»

0’2 Nu

(92)

Sp =

_262T;  202T,

02 No (93)

Es

and the direct-to-diffuse power ratio




2

Ry= 2= e (94)

£y 20?
we get
g,,/z 2, [2d5T5/0?
Pb(al% [ (‘JQH Ep+2 ”+

)
2(§b+2) Es+2)

272 22,2
-a;T; a’iTy/c a; |Gy Tr/o
[exp{ Ser? } exp{ ———_ib ") } x Io{ £, 42 (95)

0 2a3T§/c 2L
2(Es +2) Ep+2 Ep+2

Using [Ref. 15]

2a5Ts/o® | 26, | | 2, [2a3Tic?
§b+2 ’ E_,b+2 B _Q §b+2, §b+2 +

_1( 207502 +2 2JC
exp{—zl( a ébb(:—;' Ch)}xlo[glz/zaJTb/Gjl (96)

in (95), we obtain

1, pld 24a5T}/a? 1 ~Cs
Pb(aJ)_z[] Q[\’é;ﬁz Ep+2 J:l+2(§h+2)e)(p{§b+2}x

-a’T? 2a,T
[exp{—a5T§/202}+exp{ a7 }xlo[ - hmﬂ (97)

0’2(§1,+2) o€ +2)
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We now employ a similar approach to remove the conditioning on a,. Integrating

the product of (80) and (97) over all possible receiver jammer amplitudes, a,, we get

L 2Gs 28
P"‘z[l QU(&“&J”)’ <ab+aJ+2)H+

&+ {‘(C”+§’)}x1[————2 G } (98)

28y +Es+2) Ep+Es+2] 0 Ep+Es¥2

where

2
_ (l?,Tb _ ain

20375, 205T
e (100)
L o
== = —= 101
] é,] 202 ( )

An alternate expression for the probability of bit error in the case of both signal and

jammer fading in terms of weighted Q functions is

_1 & 2Cs
Pb—z[l Q(J§b+g1+2 J;’*'z’}jl +

%{Q[ 2 J 2 )-exp{———g”cﬂ }xlo{———z‘% H (102)

§b+E,.J+2 §b+§_/+2' §b+§_/+2 §b+§_/+2

However, since there is no closed form solution for the Q function, in practice it is easier

to compute the performance using (98).
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a. Special Cases of BFSK with Single Tone Interference
The final aspect of the analysis is to consider how the derived result
simplifies for special cases, both as a check on earlier work and to see limiting cases. As
check on (98), when there is no signal the probability of bit error reduces to one half as
expected.
Next consider the case of no jamming. In this case, &;= ;= 0, and the

probability of bit error reduces to

(.1 —Cb
Pb—(§b+2)xexp{§b+2} (103)

which is the usual BFSK result.

Another limiting case is the performance when both the signal and the
jammer experience Rayleigh fading. In this case both §; and ; are zero and all the

received energy is in the respective diffuse component. In this case (98) reduces to

__]_ §J+2
P”‘z(gb+§,+2) (104)

This displays an inverse linear relationship similar to Rayleigh fading without jamming
[Ref. 2]. Performance is improved if we change the case slightly to that where the

jammer suffers Rayleigh fading while the signal experiences Ricean fading. Then

P,,:l(ééLz) xexp{_—gh} (105)

2\Ep+E,+2 Ep+Es+2

Here any direct signal component that reaches the receiver will serve to drive the

probability of bit error lower in an exponential fashion.
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Perhaps the most optimistic performance from the communicator's point oi’
view is when the signal has no fading, but the jammer suffers Rayleigh fading. In this

case, {;=E&,=0,and (98) reduces to

Py= (%) exp{ gﬁbz} (106)

On the other hand , the most pessimistic performance is likely to occur when
the signal suffers Rayleigh fading, but the jammer has no fading. In this case,

G =¢&;=0, and (98) reduces to

1,1 £
Pb—z[l (§b+2)exp{§b+2}:| (107)

This performance will be very poor unless there is a relatively large amount of diffuse

signal energy received.
3. FFH/BFSK Analysis with Multi-Tone Interference

We now turn our attention to the application of (98) to spread spectrum and the
partial band multi-tone jamming scenario. Suppose N is the number of hop slots in the
FFH/BFSK system and the jammer transmits q interfering tones. When we credit the

jammer with only placing at most one tone per hop slot then

Y= (%) (108)

is the fraction of spread spectrum bandwidth jammed where v is restricted to
1
—<y<1.0 109
v (109)

Now,
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Py = (]%) P,[errorlhop jammed] + (I-V;,—q) P,[errorlhop not jammed]

where

P,[errorlhop not jammed] = P,[error| BFSK] = (EITZJ exp {g:%_b—z} (110)
b b

To apply our earlier result for the BFSK receiver we must define our jammer parameters
on a per hop basis. If ¥, is the average total jammer power, then the average total

jammer power per hop is

=[J

-éy—”+%’i. ' (111)

which implies &, and {; are replaced by Nt,/q and NC//q , respectively, in (98). Now (110)

q f 28, 258
P,=|-= -
b (ZN) 1 Q{ Lo+ g +2° gb+§§J+2] ¥

o) o) i)l [
N 2(§b+§§J+2) P B+ 5E,+2 ’ Ep+5E,+2

*(ﬁ/_grﬁ)(gblz)e"p{'(gﬁz)} (112)

In the case of FFH/BFSK with one hop per bit, no fading. and no thermal noise

is given as

(N,=0), an analytic expression for the worst case number of jamming tones, g, is
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(N7 _
ISINTG( == ) =¢, <N (113)

One aim of this thesis is to determine if this limited analytic result for g, remains true for
FFH/BFSK over Ricean fading channels in the presence of thermal noise. This is

accomplished by comparing the performance based on ¢, and some offset values of ¢.
4. FFH/BFSK Analysis Allowing Two Interference Tones

We now extend the previous results to a situation which includes the possibility
that both receiver branches contain an interfering tone. This is a relaxation of the
intelligent jammer scenario employed thus far. In this situation, the probability of bit

error may be expressed as

Py = P,[no hops jammed] x P, [errorino hops jammed]
+P,[one tone jammed] x P,[errorlone tone jammed]

+P,[two tones jammed] x P,[errorltwo tones jammed] (114)

The first two conditional probabilities were previously determined in Section 2.
However, the probability of those events occurring is a sample without replacement

situation. That is

P,[one tone jammed] = P,[one tone jammed N one tone not jammed]

P[0 tone jammed |1 tone not jammed] x P,[1 tone jammed |0 tone not jammed]
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= (570)\1 “aN-1) T (Eﬁ) \3nv=1) (115)
Similarly

P,[no tones jammed] = (1 - %,) ( - E—A—Iq—_l)

_(2N-g\(2N-1-¢q)

RN IAN S (116)
And lastly, the probability that both tones are jammed is
P.[ both jammed] = P,[l jammed M 0 jammed]
(4 )( g-1)
_(2N \2v=1) (17

All that remains is to determine the probability of error given that both branches are
jammed.
a. Extension of Single Interfering Tone Results
Now that both branches of the BFSK receiver contain jamming tones,
symmetry is restored . [Ref. 11] Hence, we can determine the probability of bit error
supposing that signal s, is sent. An error occurs when the output of branch two is greater

than the output of branch one and (54) yields

P, [errorltwo tones jammed] = (%) x

(118)

4

-~ 2 2 b) ‘/ 2 2

-0 Th\/ac+a,+,.acajcos?> a,Ty .0 a,Ty, Teyac+a;+2acascosd
c e c ° c
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Alternatively, this may be expressed as

2
a,T, Tb ,/a% +aj;+2acaycosd

P, [errorltwo tones jammed] = O 5 S -
Tﬁ (a% + 20'3 +2a.a,c08 5) Tf,a J ,/;E + a3 +2a.a;cosd
(1)exp1- _ x Iy ; (119
20 c

The conditioning on the received amplitudes of the signal and the jammer is removed by
multiplying (119) with (80) and (81) and integrating over all values of a,and a, . In
addition, the conditioning on the signal-to-jammer phase difference, 8, must also be

removed.
In order to make (119) valid for FFH, we substitute (111) into (119). Now,

symbolically the probability of error in the case of both tones jammed, P,, , is

Pp = (511;) J';n J:fA_;(aJ)j:fA(»(ac)
x{Q[aJTT” 27N , (%) ‘/a§ + 27Na3 +2acaJ‘/%—]\7 cosd )—

| Ti(aﬁ +2a+ ZacaJ‘/? cos 6)
(3)ex

25°

Tia./ el
< Io __G_Zq_ ag+%va3+2aqu/27N cosd |(dacda,ds — (120)
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Substituting our previous results for BFSK and (120) into (114), we get the

total probability of bit error

o= () B (s e | 22

1)(9.)(2N=q) / 2Gs 45
+(§)(2N)\2N-1) I_Q[ Ep+ e, 42 gHééHzJ

(ZTN§1+2) o —(Cb+27N§J) , 2.J6p 2,

+ P . x 1o .
zp+e,+2) |G+ FE+2] & TE2

)) (21)

Further simplification results by using the substitutions

|

G CER

9
P

o= (122)
which implies
o = 2t da, (123)
and
Yi= a]zf" (124)
which implies
s =220 gy, (125)

Then using (122) through (125) in (80) and (81)
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frere) = (éi) exp

and

frvi) = (é)exp {‘%@l " 1"[2@ }

b. Special Cases when Allowing Two Interference Tones

Yerbel ol frele
E } "’{2 cc}

(126)

(127)

As a consequence of the triple nested numerical integration required by (120)

in order to evaluate (121), obtaining numerical results when two tones can jam a single

hop slot is computationally intensive. Based on the results when thermal noise is

neglected, we expect the performance will be better than when only a single interfering

tone is allowed.

When there is no signal fading

and when there is no jammer fading

In the case of Rayleigh fading of the signal
Yo=8sandCp =0
and

fs=8and5,=0

(128)

(129)

(130)

(131)

when the jammer is Rayleigh faded. Two limiting cases allow evaluation of the most

pessimistic and most optimistic performance. Optimistically. from the communicator's
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point of view, when there is no signal fading and Rayleigh fading of the jammer, the

probability of bit error reduces to

(2N-g\(2N-g-1)
Po=\N J\oN=T J&*P

2] (R e 25

(Eqﬁ) @L]z‘:—‘{) (_21;) J:)ln J:frA,(YJ)X {Q(J-Z—]_\ny_h], ‘/71, +2Ny,/q+2,/2NybyJ/q cos&)

1 -1
_(-2-) exp {7(71, + 4Ny, lq + 21/ 2Nypy4/q cos 8) }

X 10[,/2Nyj/q Jy;, +2Ny,lq +22Nysys/q cosd ]}dyjdﬁ (132)

which requires two numerical integrations rather than three.
The most pessimistic performance result from Rayleigh fading of the signal

and no fading of the jammer. In this case,

o= (2N (Wogo D) () (420 { % }

\2v J\Tav =T )P an/\GN 27 )P P

(2_‘]]\7) @%_:_?_) (51;) En J:frh(yb}x {Q(,/2Ny1/q.’/y;,+2NyJ/q+21/2Ny1,yJ/q cosﬁ)

_(%) exp { ::';‘(Yh +4Ny,lg+2 ‘/2Nywj/q cos 6) }

x Io[‘/ 2Ny, lq ‘/y;, + 2Ny /g +2J2Nypys/q cosd j|}dy;,d8 (133)
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Further simplification when neither the signal nor the jammer fade. In this

instance (132) reduces to

P (TR -3}

FE-ol Tw)

exp{ -1y + 2NG1g)|  1o| 2NEGiCilg ]]

+(%V) (_q__l (.21_)I; { (‘/ZNQJ/q JYb +2NYJ/q+21/2N'Yb'YJ/q cos&)

(2| (2) o+ i 2,7 )

Io[ 1/2NyJ/q , Jy;, +2NyJlq + 21/2N'Yb'y_]/q cosd ]}dé (134)

where a single finite numerical integration over the phase angle is required. In this thesis
only (134) is evaluated. Further work in this area could consider the effects of Ricean

fading in the both tones jammed case based on (120).
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C. MULTI-TONE INTERFERENCE NUMERICAL PROCEDURE

The crux of the numerical computation for this problem is the accurate and efficient

computation of Marcum's @ function. Originally the O function described a shorthand
notation for the probability integral representing the output of a correlation detector
containing a radar target in the presence of narrowband Gaussian noise [Ref. 14].

The Q function, described by (59), has no closed form solution expressible in a finite
number of terms. Frequently cited equivalent expressions containing an infinite series of
Bessel functions, while valuable as analysis tools, do not ease the computational burden.
The strategy is to test the input arguments for their magnitude, difference, and the
presence of zeros. Based on the input arguments the program computes the value of the
Q function in an appropriate subroutine and returns to the calling program.

First, the presence of a zero passed as an input argument is tested. If present the
following simplification results

0(a,0)=1.0 (135)

and
00.8)= exp{-(4)p?] (136)

The second consideration is the magnitude and difference of the input arguments. If the
product of the arguments is greater than ten and their difference is greater than five, then
the Q function is computed using an asymptotic polynomial. If the magnitude of the
product is greater than 1000, then the Q function is computed by directly integrating (59)

using a large argument approximation for the Bessel function. For the semi-infinite
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integration required here, the Romberg technique is very efficient. The Romberg
technique is a recursive implementation of Richardson's extrapolation which is continued
until a user specified tolerance is reached. In theory and in practice it offers much faster
convergence and smaller errors than the standard trapezoidal or Simpson technique.
[Ref. 16]

If none of these conditions is satisfied the program defaults to a computation based
on a numerical inverse Laplace transform. The integrand of (59) is expressed in the

Laplace domain as [Ref. 10, equation 6.643.4]

F(s)=1_(2sl+l) xexP{_(%_z)(l_kLlN (137)

Then the integration may be determined from the inverse transform of

£)0-55)]] o

This is useful for many intermediate values of the input arguments.

(o, B) = F(s =%x[l—(£—1;—l) X exp
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D. MULTI -TONE INTERFERENCE RESULTS

First, the results for the scenario in which at most one tone is jammed per hop slot
are presented. The performance for a wide variety of channel conditions is computed for
several representative signal to thermal noise ratios. All figures are for one hop per bit
(L=1). For each channel case there are two prime questions to be answered. First, "How
does performance vary for fixed values of g?" Second, "Is the no fading analytic and no
thermal noise worst case ¢ still valid for fading channels?" To answer the second
question the proposed worst case value of ¢, g, ,is used to compute performance as well
as some values of g offset from g,. To show the trend, the results of g,+ 4 and ¢, -4 are
compared with g, based performance. Table 2 provides an overview of the channel

conditions considered.

68




TABLE 2. MULTI-TONE CHANNEL CONDITIONS

NAME E/N, dB R,/ R,/
Ricean Fading Ricean Fading
Figure 25 13.35 100 / Very Weak 100 / Very Weak
Figure 26 13.35 100 / Very Weak 0.0 / Rayleigh
Figure 27 13.35 0.0 / Rayleigh 100 / Very Weak
Figure 28 13.35 10 / Moderate 10 / Moderate
Figure 29 13.35 0.0/ Rayleigh 0.0/ Rayleigh
Figure 30 13.35 10 / Moderate 1 / Strong
Figure 31 13.35 50/ Weak 50/ Weak
Figure 32 13.35 25/Low 25/ Low
Figure 33 20 10 / Moderate 10 / Moderate
Figure 34 20 1 / Strong 10 / Moderate
Figure 35 20 10 / Moderate 1 / Strong

Initially, we consider the case where fading has very little influence to compare with
a no fading analytic result. Figure 25 is an illustration of the performance obtained with
a moderate signal-to-thermal noise ratio that typically provides a 10”° bit error ratio in the
absence of fading and interference. Thus, Figure 25 provides a good basis for
comparison with the no fading case. The worst case performance is seen as the envelope
of the fixed g curves. As the signal-to-jammer power increases, the performance quickly
approaches 2x107°, which is very close to the no jamming performance. We can also see
that the degradation inflicted by multi-tone jamming is strongly influenced the choice of a

fixed number of interference tones.

69




Pb
1E+0

g=1 q=10 q=100 g=1000
- - - - - - - - ,Vﬁ,,,,,,

1E-1 |

1E2 |-

E3 |\

1E4 - D

1E-5

-30.1 -24.08 -18.06 -1204 -6.02 0.00 6.02 1204 18.06 24.08 30.10
Eb/NJ (dB)

Figure 25. E,/N,=13.35dB, R, =100, R,=100

To bracket the range of expected performance the case of extreme of Rayleigh
jammer fading and very weak signal fading is depicted in Figure 26. Here the
performance is slightly improved at lower signal-to-jammer power ratios than is
observed in Figure 25. Equivalently, the worst case envelope is slightly inclined more
toward the y-axis indicating better performance. However, at low signal-to-jammer

power levels, the performance is stiil relatively poor.
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Figure 26. E/N,=13.35dB, R,=100, R,=0.0
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Figure 27. E,/N,=13.35dB, R,= 0, R,=100

At the other extreme, a pessimistic performance is obtained when the signal suffers
Rayleigh fading, but the jammer has very weak fading. The jammer is able to reduce
performance overall and maintain a high bit error ratio (BER) for higher signal-to-jammer
power ratios. Even at Ey/N,=30dB, the effects of fading and jamming produce a BER

near 4x102.

72




Pb
5E-1

g=1 g=10 q=100 q=1000
2E1 |\ - e —— —e— i

1E-1

SE-2

2E-2
1E-2 |- -

SE-3

2E3 |7

1E-3

-30.1 -2408 -18.06 -12.04 602 00  6.02 1204 1806 2408 30.10
Eb/NJ (dB)

Figure 28. E,/N,=13.35dB, R,=10, R,=10

In Figure 28 we display the performance when both the signal and the jammer
experience moderate Ricean fading. As expected the performance lies between the
optimistic case of Figure 26 and the pessimistic case of Figure 27. In this case each tone
contains the same direct-to-diffuse power ratio, but as E,/N, grows above 0dB, the direct
signal power is greater than the direct jamrner power and is able to mitigate the influence

of multi-tone jamming.
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Figure 29. E,/N,=13.35dB, R,=0, R,<0

In Figure 29, the signal and jammer again share the same direct-to-diffuse power
ratio, but now Rayleigh fading is assumed. The performance is worse overall compared
with the moderate Ricean case and approximately 3dB worse at higher signal-to-jammer
power levels. Also note that the worst case occurs at g=1000. Therefore, the greatest
degradation occurs when the jammer is forced into the multi-tone equivalent of

broadband jamming.
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Figure 30. E/N,=13.35dB, R,=10, R,=1

In Figure 30, the channel conditions are more favorable to the communicator and
represent a ten fold increase in the R, over the R, from the performance depicted in
Figure 28. At the critical value of 0dB for the signal-to-jammer power ratio (E,/N,) the
performance in the favorable channel ( Figure 30) is 3.3x10™ while in the moderate
Ricean channel (Figure 28) the same E,/N, produces a BER of 2.1x10?. So the fact that
the jammer suffers more fading over the Ricean channel produces a small improvement

for the communicator.
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Figure 31. Ey/N,=13.35dB, R,=50, R,=50

Figure 31 is similar to Figure 25, but includes less fading. The performance is
essentially the same as the very weak fading performance, but with some slight
improvement for E,/N, greater than 0dB. As in earlier fading channel cases, the

performance varies greatly for fixed values of ¢ when the jammer has a power advantage.
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Figure 32. E/N,=13.35dB, R,=25, R;=25

Figure 32 depicts another drop in the channel direct-to-diffuse ratio shared by the
signal and jammer. At this level the difference in performance below the very weak case
where the direct-to-diffuse ratio was 100 is noticeable. When the jammer enjoys a power
advantage. the BER is still unacceptably high. The worst case envelope curve is nearly

linear above E,/N,=0dB and nearly flat for all choices of ¢ above 0dB.
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Figure 33. E/N,=20dB, R,=10, R,=10

In Figure 33 we begin to look at the performance for larger signal-to-thermal noise
ratios. An increase in E/N, from 13.35dB (Figure 28) to 20dB (Figure 33) both in
moderate Ricean fading, provides an overall improvement in performance. However, the
improvement is significant when E,/N, is greater than -12dB and provides nearly a factor

of ten at 0dB.
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Figure 34. E/N,=20dB, R,=10, R,=10

Figure 34 shows how rapidly performance can degrade even for a strong 20dB
signal-to-thermal noise power ratio when the signal fading progresses from moderate
(Figure 33) to strong Ricean fading. Similar to the situation observed in Figure 27 , the
worst case performance is obtained when the jammer places an interfering tone in every
hop slot. The jammer therefore. need not be very sophisticated to prevent efficient
communications. In Figure 35 the roles are reversed. With the same signal-to-thermal
noise ratio, the signal experiences moderate Ricean fading while the jammer experiences

strong Ricean fading.
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Figure 35. E/N,=20dB, R,=10, R;=1

With moderate Ricean signal fading a particular value of g, is required to cause the
worst case performance demanding greater jammer sophistication. The strongly faded
jamming tone is much less effective when E,/N, is greater than 0dB. Previously we
observed an approximate tenfold drop in BER experienced for the E,/N,=13.35dB case as
the jammer fading grew from moderate (R,=10) to strong (R,=1) at E,/N,=0dB. This
trend is more pronounced at the E,/N,=20dB level as we transition from Figure 34 to

Figure 35 where the improvement is greater than a factor of 25.
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The influence of fading on the selection of g to cause worst case performance in the
multi-tone environment remains to be answered. For FFH/BFSK in the absence of fading
and thermal noise we expect the worst case to occur when q is chosen as the integer
portion of the jammer-to-signal power ratio. A comparison of the following worst case

performance curves will show them to be the envelope of the previous fixed g computed

curves.
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Figure 36. Worst Case Multi-Tone Jammung for
E/N,=13.35dB. R,=0. R,=100

The most pessimistic case for the communicator is pictured in Figure 36 where the
signal has Rayleigh fading and the jammer enjoys essentially no fading. We see that in

this situation the jammer does not need to be very sophisticated to hinder communication.
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The results displayed in Figure 36 and in Figure 37 indicate there is essentially no

difference in the g, performance and the g, +4 and g, -4 cases.
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Figure 37. Worst Case Multi-Tone Jamming
E/N,=13.35dB, R,=0, R;=0

The conclusion to draw from Figure 37 is the degradation in channel conditions for
the jammer does not significantly assist the communicator when both are acting through

Rayleigh channels.
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For convenience we will denote the ¢,+4 and ¢.,-4 collectively as Ag,. It is not until

there is some appreciable direct sign.. power reaching the receiver that the g, and Aq,

begin to show some deviation.
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Figure 38. Worst Case Multi-Tone Jamming
E/N,=20dB, R,=10. R=10,

In Figure 38 the Agq, curves dip below the anticipated worst case curve. The trend

progresses as the direct-to-diffuse ratio increases in Figure 39 and Figure 40 respectively.
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Figure 39. Worst Case Multi-Tone Jamming
E,/N,=13.35dB, R,=25, R;=25,

Since the value of g is required to be a positive integer greater than or equal to one,
there is a small discontinuity in the g,-4 curve. At those signal-to-jammer power values

where the g, value would be less than 5, the g,-4 defaults to g=1 for the computation.
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Figure 40. Worst Case Multi-Tone Jamming
EyN,=13.35dB, R;=50, R=50,

The salient observation in Figure 38, Figure 39, and Figure 40 is that the anticipated
worst case performance in the no fading and no thermal noise case remains the worst case

performance for the weakly and moderately faded channels with moderate thermal noise.
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For comparison Figure 41, Figure 42, Figure 43 displays the composite worst case

performance for various signal-to-thermal noise ratios.
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Figure 41. Worst Case Multi-Tone Jamming for Several
Values of E,/N,, R;=1, R;=1

Figure 41 displays the performance when both the signal and the jammer suffer
strong fading. The diffuse nature of the channel keeps the probability of bit error
relatively high despite high signal-to-jammer power ratios and serves more to the

detriment to the communicator than the jammer.
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When the channel has moderate vice strong Ricean fading the performance is that
shown in Figure 42. Above -6dB E/N, there is a significant improvement in

performance over that in Figure 41. The noticeable change in slope for the 20dB curve is

Pb
1E+0
13.35dB 16dB 20dB
1E-1} IR
1E-2 |-
1E-3
1E-4
1E-5
-30.1 -15.05 0.00 15.05 30.10
EbINJ (dB)

Figure 42. Worst Case Multi-Tone Jamming for Several
Values of E,/N, . R,=10, R,=10

a consequence of the signal-to-jammer phase term in the bit error analysis. When the
signal amplitude is consistently greater than the jammer's amplitude. the phase difference
has little effect and the rate of improving performance increases. This slope change is

also noticeable in Figure 43 for the 20 dB curve.
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Figure 43. Worst Case Multi-Tone Jamming for Several
Values of E,/N,, R,=100, R;=1

Figure 43 is a composite of performance under channel conditions favorable to the
communicator. However, the 10:1 ratio in the signal's direct-to-diffuse over the jammer's
direct-to-diffuse ratio provides little relief to the communicator.

Figure 44 displays the performance when the jammer's intelligence is relaxed to
allow two interference tones in a hop slot when neither the signal nor the jammer

experience fading.
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Figure 44. Worst Case Multi-Tone Interference when
Allowing Two Jamming Tones per Hop Slot

Figure 44 =xhibits the same linear improvement in performance as E,/N, decreases
for several values of E,/N,. There is a marked change in slope at E,/N, =0dB. Overall
performance is better thur. the perfromance when at most one tone per hop slot is jammed

in a near Gaussian channel as depicted in Figure 40.
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IV. CONCLUSIONS

A. FFH/MFSK PARTIAL-BAND NOISE JAMMING

A performance analysis has been completed for the conventional fast
frequency-hopped M-ary orthogonal frequency-shift keyed receiver employing diversity
with noncoherent reception of signals transmitted over Ricean fading channels. We can
draw several conclusions based on the results.

Diversity alone is insufficient to overcome the effects of worst case partial band
jamming acting in Ricean fading channels. The intelligent jammer can optimize the
fraction of bandwidth jammed to force a worst case bit error ratio (BER). The
noncoherent combining losses experienced by noncoherent systems is aggravated by the
low signal-to-total noise ratio. These two factors combine to mitigate the advantages of
increased diversity in a constant energy per hop system.

Increasing the modulation order provides only modest improvements in performance
which decrease as diversity increases. For most channel conditions. the performance for
M=4 and M=8 is essentially the same for all L greater than four. The only remaining
advantage for increased modulation order is to offset the reduction in data rate that results
from increasing diversity, L, in a constant energy per hop system.

When the signal experiences Rayleigh or strong Ricean fading. the jammer need not
be very sophisticated to cause marked impairment to the communicator. Additionally.

when comparing the partial-band jamming strategy for M=2 and L=1 in which the signal
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suffers moderate to strong fading to multi-tone jamming under the same conditions. we
see that the partial-band jamming strategy causes a higher BER while requiring less

precise knowledge of the receiver by the jammer.

B. FFH/BFSK MULTI-TONE JAMMING

In this thesis. the case of /=1 is considered for the fast frequency -hopped receiver
described above. The influence of Ricean fading of both the signal and the jammer s
included 1n the analy sis as s the effect of thermal noise

First. the counter-intuitive result 1~ obtained that Ricean fading ot the jammer
provides httle. 1f any . relief to the communicator. while. as expected. moderate to strong
fading of the signal tone markedly reduces performance Worst case multi-tone jJamming
combined with signal tading produces unacceptably high probabihiies of it error 1 ¢
greater than 10 Above this fevel it i< unhikels that formard ervor correction coding can
be successtully implemented

The intelhgent jammer can select the number of tones to Jam which produces a worst
case pertormance. The value of ¢ chosen in the fading channel with thermal noise to
cause worst case performance 1s the same value of ¢ amed at analvucally for the noise
frec case without fading. For all combinations of channel conditions. not until the
signal-to-jammer power ratio exceeds 10dB 1s the performance essentially thermal noise
himited. When the jammer has a 3dB or better power advantage. the performance. in cven
the most optimistic channel conditions. 1s veny poor and 1s dominated by the jammer

power
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